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Abstract

Studies on magneto-electro-elastic cylindrical shell have been carried out in the present work. The
constitutive equations of piezomagnetic medium involving mechanical, electrical and magnetic fields are
used to derive finite element model for the system. The semi-analytical finite element model is developed.
The influence of piezomagnetic effect on the structural frequencies is evaluated. The comparative study of
shell with layered configuration with that of multiphase system is attempted. The study is carried out for a
typical shell with clamped–clamped boundary conditions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Recent literature dealing with research on the behaviour of magneto-electro-elastic structures
has gained more importance. Studies on static and dynamic behaviour on plates as well as infinite
cylinder has been carried out in literature. Piezoelectric and piezomagnetic composites exhibit
coupling effect of electric and magnetic fields. These composite materials can be used as layers or
as multiphase. Sunar et al. [1] have studied the finite element modelling of thermopiezomagnetic
medium. The behaviour of finitely long cylindrical shells under pressure loading has been studied
see front matter r 2005 Elsevier Ltd. All rights reserved.
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by Wang and Zhong [2]. Piezoelectric and piezomagnetic composites in general have the coupling
effect which is two order higher than that of constituent materials [2]. Free vibration studies
of simply supported and multilayered magneto-electro-elastic plates has been carried out using a
propagator matrix approach, reported by Pan and Heyliger [3]. Buchanan [4] has studied
the behaviour of infinitely long magneto-electro-elastic cylindrical shells using semi-analytical
finite element methods. Recently, Buchanan [5] has studied the behaviour of layered versus
multiphase magneto-electro-elastic composites. Pan [6] has derived exact solutions for three
dimensional, anisotropic, linearly magneto-electro-elastic, simply supported and multilayered
rectangular plates under static loadings. Aboudi [7] has carried out micromechanical analysis
of fully coupled electro-magneto-thermo-elastic composites. In his study, a homogenization
micromechanical method is employed for the prediction of the effective moduli of magneto-
electro-elastic composites. His study includes determination of effective elastic, piezoelectric,
piezomagnetic, dielectric, magnetic permeability and electromagnetic coupling moduli, as well as
effective thermal expansion coefficients and the associated pyroelectric and pyro-
magnetic constants for magneto-electro-elastic composite. Lu et al. [8] have studied frequency
behaviour of piezoelectric circular cylindrical shells using an approximate frequency formula.
Ng et al. [9] have developed a finite element model for active control of functionally graded
shells in frequency domain using piezoelectric sensors and actuators. Ding et al. [10]
have conducted a free vibration study of piezoelectric cylindrical shells filled with compressible
fluid.
From the literature survey, it is found that only a few studies on magneto-electro-elastic

structures have been reported. It is felt that such structures can be used for active vibration
control. The study on the vibration behaviour of such structures and influence of piezoelectric and
magnetic induction on frequency is extremely useful. Hence in the present study, vibration
behaviour of such structures in the form of cylindrical shells is analysed using a semi-analytical
finite element approach. BaTiO3 and CoFe2O4 were used as piezoelectric and piezomagnetic
materials, respectively, for the study.
2. Formulation

2.1. Constitutive equations

The coupled constitutive equations for anisotropic and linearly magneto-electro-elastic solids
can be written as [3]

sj ¼ CjkSk � ekjEk � qkjHk, (1)

Dj ¼ ejkSk þ �jkEk þmjkHk, (2)

Bj ¼ qjkSk þmjkEk þ mjkHk, (3)

where sj denotes stress, Dj is electric displacement and Bj is magnetic induction. Cjk, ejk and mjk are
the elastic, dielectric and magnetic permeability coefficients. ekj, qkj and mjk are piezoelectric,
piezomagnetic and magnetoelectric material coefficients. The strain displacement equations for
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the cylindrical shell are
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where u, v and w are mechanical displacements in coordinate directions r, y, and z.
The electric field vector Ei is related to the electric potential F as shown below:

Er ¼ E1 ¼ �
qf
qr
; Ey ¼ E2 ¼ �

1

r

qf
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qf
qz

. (5)

The magnetic field Hi is related to magnetic potential c as shown below:

Hr ¼ H1 ¼ �
qc
qr
; Hy ¼ H2 ¼ �

1

r

qc
qy
; Hz ¼ H3 ¼ �

qc
@z

. (6)

A completely coupled magneto-electro-elastic material matrix, assuming a hexagonal crystal class,
for above constitutive equations can be given below [4].
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where C66 ¼ ððC11 � C12Þ=2Þ.

2.2. Finite element formulation

Semi-analytical finite element approach for the present shell problem is used to express the
displacements, electric potential and magnetic potential as trigonometric functions in the
circumferential direction as

u ¼
X

un cos ny; v ¼
X

vn sin ny; w ¼
X

wn cos ny,

f ¼
X

fn cos ny; c ¼
X

cn cos ny. (8)
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The semi-analytical finite element approach is used to study the magneto-electro-elastic cylindrical
shell as the geometry and material properties of the shell does not vary along the y direction. In
such cases, it is possible to consider a series of simplified solutions. Due to the orthogonal
property of trigonometric functions, the vibration modes become decoupled and lead to simpler
solutions with substantial savings in computational time.
A three noded triangular element is used to model the shell structure with u, v, w, f and c as

nodal degree of freedom. For clamped–clamped boundary conditions of magneto-electro-elastic
shell, u ¼ v ¼ w ¼ f ¼ c ¼ 0, at z ¼ 0 and at z ¼ L are assumed. The number of finite elements
in the radial direction are 4 and 26 elements along the axial directions were used for the study. The
finite element discretization is shown in Fig. 1.
The displacement, electric potential and magnetic potential functions can be generalized in the

following form for the nth harmonic:

un ¼ L1ðu1 � u3Þ þ L2ðu2 � u3Þ þ u3,

vn ¼ L1ðv1 � v3Þ þ L2ðv2 � v3Þ þ v3,

wn ¼ L1ðw1 � w3Þ þ L2ðw2 � w3Þ þ w3,

fn
¼ L1ðf1 � f3Þ þ L2ðf2 � f3Þ þ f3,

cn
¼ L1ðc1 � c3Þ þ L2ðc2 � c3Þ þ c3. (9)

After integrating in y direction, a formulation for such coupled field can be written as [2]

½½Kuu� � o2½M��fUg þ ½Kuf�ffg þ ½Kuc�fcg ¼ 0,

½Kuf�
TfUg � ½Kff�ffg � ½Kfc�fcg ¼ 0,

½Kuc�
TfUg � ½Kfc�

Tffg � ½Kcc�fcg ¼ 0. (10)
z(w)

r(u)
ri

1 2

3

ro

θ(v)

Fig. 1. Shell discretization for three noded triangular elements.



ARTICLE IN PRESS

A.R. Annigeri et al. / Journal of Sound and Vibration 292 (2006) 300–314304
Various stiffness matrices are defined as shown below:

½Kuu� ¼ c

Z
v

½Bu�
T½C�½Bu� dA,

½Kuf� ¼ c

Z
v
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v
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v
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v
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½Kfc� ¼ c

Z
v

½Bf�
T½m�½Bc� dA,

½M� ¼ c

Z
v

½N�T½r�½N� dA, (11)

where ½Bu�, ½Bf� and ½Bc� are for strain–displacement, electric field–electric potential and magnetic
field–magnetic potential, respectively, where dA ¼ 2prdrdz and

c ¼ 2p for n ¼ 0,

c ¼ 1 for n40.

In Eq. (10), elimination of electric and magnetic potential was done by condensation techniques to
get ½Keq�.

½Keq�fUg þ ½M�f €Ug ¼ 0, (12)

where

½Keq� ¼ ½Kuu� þ ½Kuf�½K II�
�1½K I� þ ½Kuc�½KV�

�1½K IV�. (13)

The component matrices for Eq. (13) are

½K I� ¼ ½Kuf�
T � ½Kfc�½Kcc�

�1½Kuc�
T, (14)

½K II� ¼ ½Kff� � ½Kfc�½Kcc�
�1½Kfc�

T, (15)

½K IV� ¼ ½Kuc�
T � ½Kfc�

T½Kff�
�1½Kuf�

T, (16)

½KV� ¼ ½Kcc� � ½Kfc�
T½Kff�

�1½Kfc�. (17)

The eigenvectors that correspond to the distribution of ffg and fcg can be as shown below.

f ¼ ½K II�
�1½K I�fUg, (18)

c ¼ ½KV�
�1½K IV�fUg. (19)
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Table 1

List of stiffness matrices used in the study

Symbol Meaning

½Kuu� Structural stiffness matrix considering elastic constants

½Keq� System stiffness matrix with magneto-electro-elastic material properties

½Keq_reduced� System stiffness matrix neglecting magnetoelectric coupling

½Keq_ff� System stiffness matrix considering piezoelectric effect

½Keq_cc� System stiffness matrix considering piezomagnetic effect

A.R. Annigeri et al. / Journal of Sound and Vibration 292 (2006) 300–314 305
The equivalent stiffness matrix [Keq_reduced] is derived by neglecting the coupling between
piezoelectric BaTiO3 and piezomagnetic CoFe2O4 materials. The magnetoelectric material
coefficient (m) is zero for single phase BaTiO3 and CoFe2O4 [4].
From Eq. (10), the reduced equations are

½½Kuu� � o2½M��fUg þ ½Kuf�ffg þ ½Kuc�fcg ¼ 0,

½Kuf�
TfUg � ½Kff�ffg ¼ 0,

½Kuc�
TfUg � ½Kcc�fcg ¼ 0. (20)

Using a static condensation method to eliminate ffg and fcg, the relation for [Keq_reduced] is given
below.

½Keq_reduced� ¼ ½Kuu� þ ½Kuf�½Kff�
�1½Kuf�

T þ ½Kuc�½Kcc�
�1½Kuc�

T. (21)

To study the piezoelectric effect on frequency due to BaTiO3 material, the stiffness matrix ½Keq_ff�

is derived and is given by

½Keq_ff� ¼ ½Kuu� þ ½Kuf�½Kff�
�1½Kuf�

T. (22)

To study the magnetic effect on frequency due to magnetic CoFe2O4 material ½Keq_cc� is used as
the stiffness matrix and is shown below:

½Keq_cc� ¼ ½Kuu� þ ½Kuc�½Kcc�
�1½Kuc�

T. (23)

Table 1 gives the list of the stiffness matrices used in the study of the magneto-electro-elastic shell.
3. Results and discussion

3.1. Validation

The validation is done using the series solution method reported by Annigeri et al. [11] for an
finite magneto-electro-elastic solid shell with simply supported boundary conditions. The results
are shown in Table 2. The dimensions of the magneto-electro-elastic shell are: length ¼ 4m, inner
radius ¼ 0.7m, outer radius ¼ 1.3m. The results of the present formulation match well for all
circumferential harmonics.
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Table 2

Comparison for different circumferential harmonics for first axial mode

n f Kuu
ðHzÞ f Keq

ðHzÞ f Keq_reduced
ðHzÞ f Keq_cc

ðHzÞ f Keq_ff
ðHzÞ

(a) Using triangular elements, for vf ¼ 100% for simply supported boundary conditions, i.e., w ¼ f ¼ c ¼ 0 at z ¼ 0

and L of the shell

1 202.4 209.7 209.7 202.4 209.7

2 349.5 352.7 352.7 349.5 352.7

3 766.2 767.8 767.8 766.2 767.8

4 1226.0 1228.0 1228.0 1226.0 1228.0

5 1690.0 1691.0 1691.0 1690.0 1691.0

(b) With series solution for series solution with w ¼ f ¼ c ¼ 0 at z ¼ 0 and l of the shell

1 201.8 202.4 202.4 201.8 202.4

2 349.3 349.6 349.7 349.3 349.6

3 759.4 760.2 760.2 759.4 760.2

4 1209.8 1210.8 1210.8 1209.8 1210.8

5 1661.8 1662.9 1662.9 1661.8 1662.9
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3.2. Frequency studies on BaTiO3 and CoFe2O4 cylindrical shells

In order to understand the behaviour of piezoelectric BaTiO3 and piezomagnetic CoFe2O4

materials frequency analysis of a shell with inner radius ðriÞ ¼ 0:7m, outer radius ðroÞ ¼ 1:3m,
length ðLÞ ¼ 4:0m, r/t ratio ¼ 1.66, L/r ratio ¼ 4 is carried out. The material properties are given
in Table 3 and the values are obtained from the graphical results of Aboudi [7] and for simplicity,
the density for both BaTiO3 and CoFe2O4 is assumed to be 5730 kg/m3 [3]. A typical multiphase
shell is shown in Fig. 2. To understand the influence of piezoelectric and piezomagnetic effects on
shell frequencies, different stiffness matrices ½Kuu�, ½Keq�, ½Keq_reduced�, ½Keq_ff� and ½Keq_cc� are
used along with the conventional mass matrix to evaluate the frequencies of the system. The
parameter l representing normalized squared structural frequency is computed as

l½Keq� ¼
Eigenvalue caused by ½Keq�

Eigenvalue caused by ½Kuu�
;

l½Keq_reduced� ¼
Eigenvalue caused by ½Keq_reduced�

Eigenvalue caused by ½Kuu�
;

l½Keq_cc� ¼
Eigenvalue caused by ½Keq_cc�

Eigenvalue caused by ½Kuu�
;

l½Keq_ff� ¼
Eigenvalue caused by ½Keq_ff�

Eigenvalue caused by ½Kuu�
.

Table 4 shows the frequency (in Hz) for the first seven harmonic values for vf ¼ 100% of BaTiO3

in BaTiO3–CoFe2O4 composite. The data corresponds to structural frequency of the shell f Kuu
,

system frequency of the shell f Keq
, system frequency by neglecting magnetoelectric coupling
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Table 3

Material constants as a percentage (volume fraction vf) of BaTiO3 in BaTiO3–CoFe2O4 composite [7]

vf 0.0 0.2 0.4 0.6 0.8 1.0

C11 286 250 225 200 175 166

C12 173 146 125 110 100 77

C13 170 145 125 110 100 78

C33 269.5 240 220 190 170 162

C44 45.3 45 45 45 50 43

e15 0 0 0 0 0 11.6

e31 0 �2 �3 �3.5 �4 �4.4

e33 0 4 7 11 14 18.6

e31 0.08 0.33 0.8 0.9 1.0 11.2

e33 0.093 2.5 5.0 7.5 10 12.6

m11 �5.9 �3.9 �2.5 �1.5 �0.8 0.05

m33 1.57 1.33 1.0 0.75 0.5 0.1

q15 560 340 220 180 80 0

q31 580 410 300 200 100 0

q33 700 550 380 260 120 0

m11 0 2.8 4.8 6.0 6.8 0

m33 0 2000 2750 2500 1500 0

Cij in 109N/m2, eij in C/m2, eij in 10�9 C/Vm, qij in N/Am, mij in 10�4N s2/C2 and mij in 10�12N s/VC.

Fig. 2. Single layered multiphase cylindrical shell.
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f Keq_reduced
, system frequency of the shell considering piezoelectric effect f Keq_cc

, system frequency of
the shell considering piezomagnetic effect f Keq_ff

.
Fig. 3 shows the plot of eigenvalues normalized by structural eigenvalues for cylindrical shell

made of piezoelectric BaTiO3 (vf ¼ 100% BaTiO3 in BaTiO3–CoFe2O4 composite). The graph
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Table 4

Frequencies (in Hz) for vf ¼ 100% BaTiO3 in BaTiO3–CoFe2O4 composite

n f Kuu
ðHzÞ f Keq

ðHzÞ f Keq_reduced
ðHzÞ f Keq_cc

ðHzÞ f Keq_ff
ðHzÞ

0 559.47 613.85 613.85 559.47 613.85

1 268.60 272.39 272.39 268.60 272.39

2 397.87 409.19 409.19 397.87 409.19

3 789.60 801.06 801.06 789.60 801.06

4 1241.25 1253.23 1253.23 1241.25 1253.23

5 1700.58 1713.93 1713.93 1700.58 1713.93

6 2149.79 2165.05 2165.05 2149.79 2165.05

0 10 15 20

1.000

1.005

1.010

1.015

1.020

1.025

1.030

Circumferential harmonics (n)

5

λ

vf=100%
λ[Keq]

λ[Keq_reduced]

λ[Keq_ψψ]

λ[Keq_φφ]

Fig. 3. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 100%.
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shows predominantly two curves for the first 20 circumferential modes for first axial mode. The
parameter l½Keq_cc� shows constant values of unity for first 20 circumferential harmonics, indicating
structural eigenvalue due to Kuu and eigenvalue due to Keq_cc being same. This is due to the fact
that the shell is made of only piezomagnetic material and there is no coupling effect between
piezoelectric and magnetoelectric components. Hence the eigenvalues due to Keq, Keq_reduced and
Keq_ff are equal depicting two graphs in the figure. Also for first five modes, the eigenvalues due
to Keq, Keq_reduced and Keq_ff show higher values than unity, but for higher harmonics (n46), the
eigenvalues due to Keq, becomes equal to eigenvalue due to Kuu.
Fig. 4 shows the eigenvalues normalized by structural eigenvalues for cylindrical shell made of

piezomagnetic CoFe2O4 (vf ¼ 0% BaTiO3 in BaTiO3–CoFe2O4 composite). The graph shows
predominantly two curves for the first 20 circumferential modes for first axial modes. The
parameter l½Keq_ff� shows constant value of unity for first 20 circumferential harmonics, indicating
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Table 5

Frequencies (in Hz) for vf ¼ 0% BaTiO3 in BaTiO3–CoFe2O4 composite

n f Kuu
ðHzÞ f Keq

ðHzÞ f Keq_reduced
ðHzÞ f Keq_cc

ðHzÞ f Keq_ff
ðHzÞ

0 635.94 634.54 634.54 634.54 635.94

1 284.67 284.40 284.40 284.40 284.67

2 455.61 451.42 451.42 451.42 455.61

3 914.43 905.81 905.81 905.81 914.43

4 1432.47 1416.65 1416.65 1416.65 1432.47

5 1954.18 1923.49 1923.49 1923.49 1954.18

6 2461.70 2379.58 2379.58 2379.58 2461.70

0 10 15 20
0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

Cirumferential harmonics (n)
5

λ

vf=0%
λ[Keq]

λ[Keq_reduced]

λ[Keq_ψψ]

λ[Keq_φφ]

Fig. 4. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 0%.
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structural eigenvalue due to Kuu and eigenvalue due to Keq_ff being same. This is due to the fact
that the shell is made of only piezomagnetic material and there is no piezoelectric and no
magnetoelectric coupling effect. Hence the eigenvalues due to Keq, Keq_reduced and Keq_ff are equal
depicting two graphs in the figure. Table 5 shows the frequency (in Hz) for the first seven
harmonic values for vf ¼ 0% of BaTiO3 in BaTiO3–CoFe2O4 composite.

3.2.1. Frequency behaviour of composite shells

Fig. 5 shows a composite shell with the stacking sequence B/F. Here, the inner shell is made of
100% BaTiO3 material (B) and outer shell is made of 100% CoFe2O3 material (F).
Fig. 6 shows eigenvalues for a composite shell with the stacking sequence (B/F) as inner shell is

of BaTiO3 material (B) and outer shell is made of CoFe2O3 material (F). The parameters l½Keq�,
l½Keq_ff� and l½Keq_cc� are clearly visible in the figure. The piezoelectric and piezomagnetic effect on
the system frequency is observed upto n ¼ 5. After 5th circumferential harmonics, the effect of
piezoelectric and piezomagnetic is not predominant.
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Fig. 5. Two layered cylindrical shell for B/F stacking.
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Fig. 6. Effect of normalized structural eigenvalues for first axial mode for composite shells (B/F stacking).
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Fig. 7 shows the results of eigenvalues for F/B stacking of shells, i.e., inner shell is of CoFe2O3

material and outer shell is made of BaTiO3 material. For initial two modes, due to higher
magnetic effect, the eigenvalue due to Keq_cc is less than the eigenvalue due to Kuu. It can be
observed that the influence of piezoelectric effect is to increase the frequency of the system and the
magnetic effect is to reduce the frequency of the system. Also it is noticed here that after the 9th
mode, the eigenvalue slightly decreases. It may be due to increased magnetic effect.
It is observed from these figures, that the effect of BaTiO3 shell is to increase the frequency due

to piezoelectric effect and the magnetic effect due to CoFe2O4 is to reduce the frequency of the
system.
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Fig. 7. Effect of normalized structural eigenvalues for first axial mode for composite shell (F/B stacking).
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3.2.2. Frequency behaviour of multiphase shells
In order to understand the behaviour of the non-dimensional frequency on different shells

for vf ¼ 0.2–0.8 is shown in Figs. 8–11. Fig. 8 shows the graphs of eigenvalues normalized
by structural eigenvalues for cylindrical shell made of 20% BaTiO3 in BaTiO3–CoFe2O4

composite. The graph shows predominantly three curves for the first 20 circumferential modes
for first axial modes. The parameters l½Keq�, l½Keq_reduced�, l½Keq_ff� show higher values than
unity, indicating higher eigenvalues for the first 6 circumferential harmonics. For this shell
the piezomagnetic effect reduces the system frequency. This can be observed from the l½Keq_cc�

graph is less than unity for first six harmonics and it brings down the system frequency,
but for higher harmonics the eigenvalues due to Keq, becomes slightly less than the eigenvalue due
to Kuu.
Fig. 9 shows the plot of vf ¼ 40% the similar trend as observed in Fig. 13 for vf ¼ 20%, for first

few modes the parameters l½Keq�, l½Keq_reduced�, l½Keq_ff� are more than unity and become equal to
eigenvalue due to Kuu. At higher modes, the piezoelectric and piezomagnetic effects on the system
frequency are not felt.
Fig. 10 shows the plot for vf ¼ 60%, the trend is similar to the earlier graphs with eigenvalues

due to Kuu and Keq becoming equal at higher modes. Here the magnetic effect is less as the shell is
composed of 40% CoFe2O4 and 60% BaTiO3 in BaTiO3–CoFe2O4 composite.
Fig. 11, for vf ¼ 80% show the trend in which the eigenvalue due to Keq_cc is more than unity

for first few modes. It is due to the fact that the composition of the shell is 20% CoFe2O4 and 80%
BaTiO3 in BaTiO3–CoFe2O4 composite. For higher modes, the system the eigenvalue becomes
almost equal to eigenvalue due to Kuu.
In all the above studies, the magnetoelectric coupling effect is not felt and it can be

observed from the above figures that plots of l½Keq� and l½Keq_reduced� merge at all circumferential
modes.
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Fig. 9. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 40%.
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Fig. 8. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 20%.
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4. Conclusion

In the present study, the frequency behaviour of clamped–clamped magneto-electro-elastic
cylindrical shells were analysed using the semi-analytical finite element approach. The influence of
piezoelectric and magnetic effect on the system frequencies as well as coupling between
piezoelectric and piezomagnetic effect were also analysed. Based on the study:
(1)
 In general, the piezoelectric effect has the tendency of stiffening the shell and hence increases
the natural frequency.
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Fig. 11. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 80%.
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Fig. 10. Effect of normalized structural eigenvalues for first axial mode for BaTiO3 vf ¼ 60%.
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(2)
 The magnetic effect is to reduce the stiffness of system and bring down the frequency of the
system; in case of composite shells, the total effect is to increase the natural frequency of the
system, depending on the composition.
(3)
 In case of multiphase shells, the volume fraction (vf) of BaTiO3 in BaTiO3–CoFe2O4

composite has considerable effect on the frequency of the system.

(4)
 The above-mentioned effects are predominant at lower circumferential modes and at higher

circumferential modes, the piezoelectric and piezomagnetic effect is negligible.
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